+1(951)512-3545 <u>nima.karimipour@email.ucr.edu</u>	Nima Karimipour		
		University of California, Riverside	
			a

<u>Github Profile</u> <u>HomePage - Linkedin</u>

Software Engineering

Programming Languages

Static Analysis

Security and Reliability

2020 - Present

2022 Summer

2024

2014 - 2019

Fifth-year PhD student in Computer Science with a focus on pluggable type systems for detecting null pointer dereferences, security, and automating code fixes using large language models (LLMs).

EDUCATION

Ph.D Student, Computer Science and Engineering, University of California, Riverside. Advisor: Prof Manu Sridharan
B.Sc., Computer Engineering (Software), Sharif University of Technology, Tehran, Iran

PROFESSIONAL EXPERIENCE

Ph.D Student Research Intern

Uber Technologies Inc.

- Joined Programming Systems Group (PSG)
- Enhanced NullAway, Uber's type-based checker designed to prevent NullPointerExceptions (NPEs) across Java and Android monorepos.
- Developed Annotator, an automated tool for practical inference of nullability types, used by engineers within Uber's Java team.
- Customized Annotator with support for module boundary considerations, enabling seamless integration of NullAway across Uber's monorepo.
- Automated the annotation inference of **millions** of lines of code, significantly reducing manual effort for NullAway compliance.
- The project led to the complete enrollment of Uber's java monorepo into NullAway.
- Published research with Uber at the Foundations of Software Engineering (FSE) 2023 conference: Practical Inference of Nullability Types

PUBLICATIONS

Practical Inference of Nullability Types (pdf, talk)2023• FSE2023 - Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. (In collaboration with Uber Technologies Inc.)•• Introduces a tool to automatically infer nullability type qualifiers, easing NPE prevention in large Java codebases.•• Uses a black-box search strategy to maximize type-checked code.•• Achieves a 69.5% reduction in NullAway errors on average across Java projects.•• Successfully deployed in production, Enrolled 160+ modules into NullAway and 1.3 million lines of code internally at Uber.2024

- Submitted Nima Karimipour, Kanak Das, Behnaz Hassanshahi, and Manu Sridharan. (In collaboration with **Oracle Labs**)
- Proposes a new type-based taint checker to reduce false positives, improving handling of third-party libraries and complex language constructs.
- Introduces an automated technique to infer tainting type qualifiers, including support for polymorphic annotations and generic types.
- Outperforms whole-program taint analyzers (e.g. CodeQL), achieving comparable precision and recall while operating 27 times faster.
- Demonstrates effective, source-compatible annotation inference, making the tool practical for real-world deployment.

A New Approach to Evaluating Nullability Inference Tools

- FSE2025 Nima Karimipour, Erfan Arvan, Martin Kellogg, and Manu Sridharan.
- Identifies bias in prior evaluations of nullability inference tools, showing that "type reconstruction" experiments can inflate effectiveness.
- Proposes a new, unbiased definition of "best" inferred annotations, better suited for comparing inference tools.
- Conducts the first head-to-head comparison of three inference tools, revealing their unique strengths and areas for improvement.

PROJECTS

2023 NullAwayAnnotator (Annotator) Accelerates checker adoption by automating annotation search to minimize errors, simplifying onboarding for existing codebases. Instantly generates patches with no remaining checker errors, offering a solution unmatched by other tools. Configurable to consider build target boundaries, avoiding annotations that could cause downstream dependency issues. • Supports large-scale projects incrementally, enabling gradual checker integration target by target. Scalable to millions of lines of code, fully integrating NullAway across Uber's entire monorepo. • Recognized for its impact, with a dedicated blog post, Automating Java Codebase Annotations for Null Safety, published by Gitar. 2022 NullAway A widely adopted tool to help eliminate NullPointerExceptions (NPEs) in Java code. · Enhanced to support expressing methods preconditions and postconditions. Added a serialization service to log errors and compute quick-fix suggestions for reported errors by the checker. TaintChecker 2024 A type-based taint analysis, enabling modular and incremental checking for better scalability and performance. • Reduces false positives by handling third-party libraries and complex constructs, improving taint analysis precision. • Automatically infers tainting type qualifiers, including support for polymorphic and generic type argument annotations.

• Outperforms whole-program taint analyzers (e.g. CodeQL) with 27X faster checking time and comparable precision.

ACADEMIC AWARDS

Deans' Distinguished Fellowship Award

PhD program at University of California, Riverside